- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Farsi, Carla (2)
-
Gillaspy, Elizabeth (2)
-
Kang, Sooran (2)
-
Packer, Judith (2)
-
FARSI, CARLA (1)
-
GILLASPY, ELIZABETH (1)
-
JORGENSEN, PALLE (1)
-
Jorgensen, Palle (1)
-
Julien, Antoine (1)
-
KANG, SOORAN (1)
-
PACKER, JUDITH (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we define the notion of monic representation for the $$C^{\ast }$$ -algebras of finite higher-rank graphs with no sources, and we undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the commutative $$C^{\ast }$$ -algebra of the continuous functions on the infinite path space, admit a cyclic vector. We link monic representations to the $$\unicode[STIX]{x1D6EC}$$ -semibranching representations previously studied by Farsi, Gillaspy, Kang and Packer (Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434 (2015), 241ā270) and also provide a universal representation model for non-negative monic representations.more » « less
-
Farsi, Carla; Gillaspy, Elizabeth; Julien, Antoine; Kang, Sooran; Packer, Judith (, Journal of Mathematical Analysis and Applications)
-
Farsi, Carla; Gillaspy, Elizabeth; Jorgensen, Palle; Kang, Sooran; Packer, Judith (, Integral Equations and Operator Theory)
An official website of the United States government
